How they work:“The Quantum Computer (Part I )”

With today’s ever increasing demand for computer power, the massive amount of processing power generated by computer manufacturers has not yet been able to quench our thirst for speed and computing capacity.

Saturday, March 17, 2012

With today’s ever increasing demand for computer power, the massive amount of processing power generated by computer manufacturers has not yet been able to quench our thirst for speed and computing capacity.

In 1947, American computer engineer Howard Aiken said that just six electronic digital computers would satisfy the computing needs of the United States. Others have made similar erratic predictions about the amount of computing power that would support our growing technological needs. Of course, Aiken didn’t count on the large amounts of data generated by scientific research, the proliferation of personal computers or the emergence of the Internet, which have only fueled our need for more, more and more computing power.Will we ever have the amount of computing power we need or want? If, as Moore’s Law states, the number of transistors on a microprocessor continues to double every 18 months, the year 2020 or 2030 will find the circuits on a microprocessor measured on an atomic scale. And the logical next step will be to create quantum computers, which will harness the power of atoms and molecules to perform memory and processing tasks. Quantum computers have the potential to perform certain calculations significantly faster than any silicon-based computer.Scientists have already built basic quantum computers that can perform certain calculations; but a practical quantum computer is still years away. You don’t have to go back too far to find the origins of quantum computing. While computers have been around for the majority of the 20th century, quantum computing was first theorized less than 30 years ago, by a physicist at the Argonne National Laboratory. Paul Benioff is credited with first applying quantum theory to computers in 1981. Benioff theorized about creating a quantum Turing machine. Most digital computers, like the one you are using to read this article, are based on the Turing Theory. The Turing machine, developed by Alan Turing in the 1930s, is a theoretical device that consists of tape of unlimited length that is divided into little squares. Each square can either hold a symbol (1 or 0) or be left blank.

A read-write device reads these symbols and blanks, which gives the machine its instructions to perform a certain program. Does this sound familiar? Well, in a quantum Turing machine, the difference is that the tape exists in a quantum state, as does the read-write head. This means that the symbols on the tape can be either 0 or 1 or a superposition of 0 and 1; in other words the symbols are both 0 and 1 (and all points in between) at the same time. While a normal Turing machine can only perform one calculation at a time, a quantum Turing machine can perform many calculations at once.(To be continued)